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Rhodium-catalyzed hydroboration has attracted much interest, 0
in part, because certain substrates react with complementary regioPh\NJ\/\/\CH

. 3
and diastereoselectivity as compared to the noncatalyzed reaction. |

The novel regiocontrol is exemplified by the rhodium-catalyzed (-1 1) 0.5 mol% Rh(nbad),BF4 wm
hydroboration of styrene which introduces boron at the benzylic or 1.1% 4, 2 eq PinBH Ph\r;l CHs
position yielding, after oxidation, predominately thhearyl alcohol, 0 THE 40°C. 2h H 2
1-phenylethanol. The catalytic asymmetric variant of catalyzed Ph<y N ’ ’ 2)H,0,
hydroboration is generally limited to the reactions of vinyl areéhes. i aq. NaOH l
We recently reported that two simple TADDOL-derived phosphite (2)-1 CHs
and phosphoramidite ligands afford high levels of enantioselectivity O OH
(90—96% ee) in the rhodium-catalyzed asymmetric hydroborations Ar Phay CH,
across a series of styrenegR = OMe, CH;, H, CF, Cl, F) (Figure OO o o Ar o i
1)34We now find that acycligs,y-unsaturated amides also undergo PN Me>< p—0Ph 3 (80%, 99% ee)
regio- and enantioselective rhodium-catalyzed hydroboration with WG Me Me o\ _g
pinacolborane (PinBH) using simple chiral monophosphite or OO A r
phosphoramidite ligands. 4 5a (Ar = CeHs)
b (Ar = (3',5-diMe)CgHs)
OH ¢ (Ar = (4'-t-Bu)CgHy)
1) 1.0% Rh(nbd)Cl, 2.2% L, : ) ) ) ) o ) )
N PinBH, DME, rt ~ Figure 2. Highly enantioselective amide-directed catalytic asymmetric
/©/\CH2 ! ’ /©/\M€ hydroboration of3,y-unsaturated amide&)- and ¢)-1.
R 2) Hy0,/NaOH R 90-96% ee
peroxide, intermediat2 affords beta-hydroxy amides)-3 in good
ph Ph ph Ph yield and remarkably high enantiomeric purity (80% yield, 99%
Me_° Q Me_° Q pPn ee)'lz . . . .
L= Me>< p-o  Ph or Me>< PN Many catalytic asymmetric reactions prove rather intolerant of
o 0 O 0 0 Bn changes in the structure of the substrate. It is therefore interesting
PR ph PR Ph to find that the diastereomeriE)- and @)-isomers ofl afford (S-3

Figure 1. Use of chiral phosphites and phosphoramidites in the rhodium- in the same yield and high enantiomeric purity. The reaction
catalyzed asymmetric hydroboration of 4-substituted styrenes. proceeds with good regiocontrol regardless of the alkene geometry;
only 3—4% of they-hydroxy amide is formed. A variety of BINOL
Evans and co-workers discovered that rhodium- and iridium- and TADDOL! derivatives were examined; the efficiencies and
catalyzed hydroborations of certgfity-unsaturated amides proceed  enantioselectivities vary widely (see the Supporting Information).
with novel regiocontrol affording predominantly thhydroxy Certain ligands derived from the TADDOL scaffold also afford
carbonyl derivatives in preference to theésomers® The observed  catalysts that exhibit quite high enantioselectivity. For example,
regiocontrol is attributed to directing by the amide moietyat the parent TADDOL-derived phenylphosph&a affords3 in 85%
is, the reaction is apparently facilitated by favorable two-point ee and the corresponding @-dimethyl)phenyl analogugb gives
binding of the amide and alkene moieties to rhodium. Two-point 93% ee'* In the latter case, however, the yield of {hdiydroxya-
substrate binding also plays an important role in rhodium-catalyzed mide is only 60% due to competing formation of thésomer (ca.
asymmetric hydrogenatiohan important catalytic asymmetric  20%).
reaction for which simple chiral monophosphites and phosphora-  The isopropyl-, isobutyl-, and phenethyl-substituted am@esc
midites are very effective ligandsThus, it seemed reasonable that also react with high enantioselectivity using phosphoramidite
rhodium-catalyzed asymmetric hydroboration also stood a good (93—99% ee) although somewhat longer reaction times are required
chance of success using such ligands. Our results bear out thisfor these more sterically congested alkenes. Hydroboration of

expectatior?. the trisubstituted alkene in amid& proceeds to less than 50%
After exploring several catalyst systems and reaction conditfons, conversion under similar reaction conditions. It might be possible

it was found that rhodium-catalyzed hydroboration Bj-{ with to push the reaction to completion by raising the catalyst load or

PinBH (0.5 mol % Rh(nbd@BF,4, 1.1 mol % BINOL-derived phos- resorting to even longer reaction times; however, a simpler solution

phoramidite4, THF, 40°C, 2 h) affords theg-substituted amid@ was found. The (4tert-butyl)phenyl analogue, phosphie, gives
(Figure 2). Organoboronates are useful intermediates for a varietya more active catalyst with this substrate. Hydroboratiod a$ing

of subsequent reactiodsthe most common of course being the 5c proceeds in good yield (79%) and high enantioselectivity (97%
oxidative B-to-O conversion to give the corresponding alcohol with ee). Again, only 3-4% of the y-isomer is formed under the
a retention of configuration. After oxidation with basic hydrogen conditions described for each substrate.
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o 1) 0.5 mol% Rh(nbd);BF4 o OH material; 2 equiv of PinBH are required for complete reactié.
1.1% 4, 2 eq PinBH NMR experiments suggest that competing formation of borate
ph., LA LUR ph. L p 99 peting
N A N (CH2)aR dimers accounts for the low yield obtained with CatBH and need
H THF, 40°C, 12 h H

L 2) HyO, aq. NaOH ) for excess PinBH under these reaction condititins.

BaR = 'I.Pr) 2 3620%) 7Ta(n=1R= 'I_Prv 93% ee) In summary, boronate esters are useful intermediates in organic
b(; :C?I:)CH o b (”fi' Sf:':' 23;’ ee) synthesis, but the current routes to chiral boronates in high
¢ (R = GH,CHoPh) ¢(n=3R=Ph 99%ee) enantiomeric purity are relatively limitéd.The efficient catalytic

1) 0.5 mol% Rh(nbd),BF 4 asymmetric hydroboration ¢f,y-unsaturated amides adds to the

Q 11% B¢, 2 eq PinBH Q OH synthetic arsenal as illustrated by their conversion to fHegy-
Phay Ny Ot Phn Chs droxycarbonyl derivatives in good yield and high enantiomeric
b CHs THF,40°C, 4 h h CHs purity. Further studies are in progress.
8 2) H20,, aq. NaOH 9 (79%, 97% ee) Acknowledgment. Financial support for this research from the
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explanation for their similarity is that the two isomers rapldly for some key pre"minary experiments’ and the NSF (CHE_0091975‘
interconvert and/or are converted to a common intermediate during MRI-0079750) and NIH (SIG-1-510-RR-06307) for the NMR

the course of the reaction. Sampling and analyzing the reaction spectrometers used in these studies carried out in facilities renovated
mixtures from E)- and @)-1 over the course of the reaction reveals ynder NIH RR016544.

no evidgnce fqr (I:ompeting_E/Z isomerism of the startin.g material. Supporting Information Available: Experimental details and
Alternatlvely, if Isomerization to a common |nterm§d|ate IS an  procedures. This material is available free of charge via the Internet at
important pathway in the reaction, a likely potential intermediate pp://pubs.acs.org.

is the corresponding,s-unsaturated amide. To explore this latter
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